Motivational effects of ethanol in DARPP-32 knock-out mice.
نویسندگان
چکیده
DARPP-32 (dopamine and adenosine 3',5'-monophosphate-regulated phosphoprotein, 32 kDa) is an important component of dopaminergic function in brain areas thought to be important for drug and alcohol addiction. The present experiments characterized the acquisition of ethanol-induced conditioned taste aversion, ethanol-induced conditioned place preference, and ethanol self-administration in DARPP-32 knock-out (KO) mice compared to wild-type (WT) controls. For taste conditioning, KO and WT mice received access to 0.2 m NaCl solution followed immediately by intraperitoneal injection of 0-4 gm/kg ethanol. Ethanol produced dose-dependent conditioned taste aversion that was the same in both genotypes. For place conditioning, KO and WT mice received eight pairings of a tactile stimulus with ethanol (2 gm/kg, i.p.), and a different stimulus with saline. Ethanol produced increases in locomotor activity during conditioning, with KO mice showing higher activity levels after ethanol compared to WT mice. WT mice, but not KO mice, acquired conditioned preference for the ethanol-paired stimulus. In the self-administration procedure, KO and WT mice were trained to lever press for access to 10% v/v ethanol. Subsequently, the mice had 23 hr/d access to food, ethanol, and water. Response patterns were determined using 0-30% v/v ethanol concentrations. WT mice displayed concentration-dependent responding for ethanol. Responding on the ethanol lever by KO mice did not change as a function of ethanol concentration. Saccharin (0.2% w/v) was subsequently added to the ethanol mixture, and responding was examined at 0, 5, 10, and 20% ethanol concentrations. Ethanol responding increased in both genotypes, although WT mice showed higher rates at all concentrations.
منابع مشابه
Role of Dopamine Type 1 Receptors and Dopamine- and cAMP-Regulated Phosphoprotein Mr 32 kDa in D-Tetrahydrocannabinol–Mediated Induction of DFosB in the Mouse Forebrain s
D-Tetrahydrocannabinol (THC), the main psychoactive component of marijuana, produces motor and motivational effects via interactions with the dopaminergic system in the caudateputamen and nucleus accumbens. However, the molecular events that underlie these interactions after THC treatment are not well understood. Our study shows that pretreatment with dopamine D1 receptor (D1R) antagonists befo...
متن کاملRole of Dopamine Type 1 Receptors and Dopamine- and cAMP-Regulated Phosphoprotein Mr 32 kDa in Δ9-Tetrahydrocannabinol-Mediated Induction of ΔFosB in the Mouse Forebrain.
Δ(9)-Tetrahydrocannabinol (THC), the main psychoactive component of marijuana, produces motor and motivational effects via interactions with the dopaminergic system in the caudate-putamen and nucleus accumbens. However, the molecular events that underlie these interactions after THC treatment are not well understood. Our study shows that pretreatment with dopamine D1 receptor (D1R) antagonists ...
متن کاملPhosphodiesterase 1B knock-out mice exhibit exaggerated locomotor hyperactivity and DARPP-32 phosphorylation in response to dopamine agonists and display impaired spatial learning.
Using homologous recombination, we generated mice lacking phosphodiesterase-mediated (PDE1B) cyclic nucleotide-hydrolyzing activity. PDE1B(-/-) mice showed exaggerated hyperactivity after acute D-methamphetamine administration. Striatal slices from PDE1B(-/-) mice exhibited increased levels of phospho-Thr34 DARPP-32 and phospho-Ser845 GluR1 after dopamine D1 receptor agonist or forskolin stimul...
متن کاملDopamine phenotype and behaviour in animal models: in relation to attention deficit hyperactivity disorder.
The phenotypic expression of behaviour is the outcome of interacting neuronal networks and is modulated by different subcortical systems. In the present paper the role of a major subcortical neurochemical system, dopamine (DA), is reviewed. In particular, knockout (KO) technology has given an overwhelming insight into the effects of specific component of the dopaminergic system. Therefore, the ...
متن کاملAdenosine A2A Receptors in Striatal Glutamatergic Terminals and GABAergic Neurons Oppositely Modulate Psychostimulant Action and DARPP-32 Phosphorylation
Adenosine A2A receptors (A2AR) are located postsynaptically in striatopallidal GABAergic neurons, antagonizing dopamine D2 receptor functions, and are also located presynaptically at corticostriatal terminals, facilitating glutamate release. To address the hypothesis that these two A2AR populations differently control the action of psychostimulants, we characterized A2AR modulation of cocaine-i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 1 شماره
صفحات -
تاریخ انتشار 2001